
On the Fock quantisation of the hydrogen atom

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 2695

(http://iopscience.iop.org/0305-4470/22/14/020)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 06:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/14
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 22 (1989) 2695-2707. Printed in the UK 

On the Fock quantisation of the hydrogen atom 

Bruno Cordani 
Dipartimento di Matematica ‘F Enriques’, Universita degli Studi di Milano, Via C Saldini, 
50. 20133, Milano, Italy. 

Received 18 January 1989 

Abstract. In a celebrated work, Fock explained the degeneracy of the energy levels of the 
Kepler problem (or  hydrogen atom) in terms of the dynamical symmetry group SO(4). 
Making a stereographic projection in the momentum space and rescaling the momenta 
with the eigenvalues of the energy, he showed that the problem is equivalent to the geodesic 
flow on the sphere S’. In this way, the ‘hidden’ symmetry SO(4) is made manifest. About 
thirty five years later, Souriau and Moser found a similar result for the classical Kepler 
problem. The present author has shown that the classical n-dimensional Kepler problem 
can be better understood by enlarging the phase space of the geodesical motion on S” and 
including time and energ) as canonical variables: a following symplectomorphism trans- 
forms the motion on S” in the Kepler problem. We want to prove in this paper that the 
Fock procedure is the implementation at ‘quantum’ level of the above-mentioned symplec- 
tomorphism. The interest is not restricted to the old Kepler problem: more recently two 
other systems exhibiting the same symmetries have been found. They are the Mclntosh- 
Cisneros-Zwanziger system and the geodesic motion in Euclidean Taub-NUT space. Both 
have a physical interest: they indeed describe a spinless test particle moving outside the 
core of a self-dual monopole and the asymptotic scattering of two self-dual monopoles, 
respectively. 

1. Introduction 

In a celebrated work, Fock [ l ]  explained the degeneracy of the energy levels of the 
Kepler problem ( K P )  (or hydrogen atom) in terms of the dynamical symmetry group 
SO(4). Making a stereographic projection in the momentum space and rescaling the 
momenta with the eigenvalues of the energy, he showed that the problem is equivalent 
to the geodesic flow on the sphere S 3 .  In this way, the ‘hidden’ symmetry SO(4) is 
made manifest. About thirty five years later, Souriau [ 2 ]  and Moser [3] found a similar 
result for the classical KP. Comparing the quantum and the classical treatments, one 
must face the usual well known problem of the existence of striking similarities joined 
with subtle differences. The aim of this paper is to make the ‘quantisation’ of the 
classical system a clear and mathematically well defined process. The interest is not 
restricted to the old KP: more recently, two other systems exhibiting the same symmetries 
have been found. They are the McIntosh-Cisneros-Zwanziger ( MICZ)  system [4] and 
the geodesic motion in Euclidean TaUb-NUT space [ 5 ] .  Both have a physical interest: 
they describe indeed a spinless test particle moving outside the core of a self-dual 
monopole [ 6 ]  and the asymptotic scattering of two self-dual monopoles [ 5 ] ,  respec- 
tively. 

We start from some previous results of the author. In [7] we have shown that the 
classical n-dimensional KP can be better understood by enlarging the phase space of 
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2696 B Cordani 

the geodesical motion on S" and including time and energy as canonical variables: a 
following symplectomorphism % sends the motion on S" in the KP. In [8] we have 
shown that the motion on S" can be quantised (in a well defined mathematical sense) 
thanks to the theory of the representation of semisimple non-compact Lie groups. We 
want to prove in this paper that the Fock procedure is the implementation at the 
'quantum' level of the above-mentioned symplectomorphism %. 

In 0 2 we briefly review all these previous results, mainly to fix the ideas and the 
notation. In 9 3 we implement the first factor of % (in fact % is viewed as the product 
of three symplectomorphisms), consisting of the interchange of the canonical coordin- 
ates: the difficulty is that the corresponding Fourier transform cannot be directly 
applied, since we have a function on S" rather than on R". In § 4 we complete the 
process, obtaining the quantisation of the various physical systems. 

As for the notation, the range of the indices is 

A, B,C=-1,0  . . .  n + l  

p, v, p = 0 . .  . n 
a, p, y =  1 . .  . n S  1 

i, j ,  k = 1 . . . n. 

In the three-dimensional case we use the vector notation. 

2. A review of previous results 

2.1. The quantum problem [ I ]  

Let us consider the Schrodinger equation for the n-dimensional KP: 

where qk are Cartesian coordinates in R" and q=(Xkq;)l /*.  Performing a Fourier 
transformation 9, write the equation in momentum space. Since [9, p 1921 

[ - ; A -  l / q l d ( q )  = W q )  (2.1) 

and  

(where f*g is the convolution integral) we find 

Let us consider bound states, € < O .  Now replace pk by (-2€)'/*xk, then imbed the 
n-dimensional space into an  (n + 1)-dimensional one with Cartesian coordinates X, 
and  perform a stereographic projection on the unit sphere. The x become local 
coordinates on S" (the north pole is missing). Let X ,  be the coordinates in R"+' of 
the point with local coordinates xk on S " ;  thus 

.. x 2 + 2 E  
X n + I  =- x 2 + 2 E '  

(2.5) 
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An immediate calculation shows that 

and that the volume element on S" is 
2(-2E)"' " 

d o = (  x 2 - 2 E  ) d"x. 

Let us also change the wavefunction by defining 

@(i) = [(-2E)'"]"" r#J ( (  -2 E ) 1'2x). 

Inserting in (2.4) we get 

2697 

(2.6) 

(2.9) 

In  this way the SO(n + 1) symmetry is made manifest. In  order to solve (2.9), remember 
the well known (and easy to check) result of the theory of homogeneous symmetric 
integral equations of the type 

,f K ( X ,  X ' ) @ ( X ' )  d X ' =  A@(X). (2.10) 

If  one can find an orthonormal expansion of the kernel as 

K ( X ,  X') = E  ~ k f ? ( X ' ) f k ( X )  
k 

then the eigenfunctions and the eigenvalues of (2.10) a r e f k ( X )  and A k .  The eigenfunc- 
tions of (2.9) are thus the n-dimensional spherical harmonics (i.e. the harmonic 
homogeneous polynomials in Rntl  restricted to S") and the eigenvalues are 

n - 1  
= 1+- l = O ,  1 . .  . 1 

(-2E)"' 2 
(2.11) 

with multiplicity ( 2 1 + n - l ) ( l + n - 2 ) ! / 1 ! ( ~ - - 1 ) ! .  

2.2. The classical problem [2,3,  71 
The classical K P  has the Hamiltonian 

H = f pZ - 1 / q (2.12) 
where qk and Ph are canonical coordinates in T*(R" - { O } ) .  

of the Lie algebra 9 of G = SO(2, n + 1). Then 
Let TAB = diag( - - + . . . + 1 be the metric tensor of RZ3"+I and mAB = -mBA a basis 

LmAB, m A C l =  qAAmBC (2.13) 
or zero if all indices are different. It is convenient to introduce special symbols for 
the elements of the basis, namely 

( 2 . 1 4 ~ )  
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or alternatively 

P , = A , + B ,  

C, = A ,  - B,. 
(2.14b) 

We now recall some well known facts [lo, 111.  Since the action of G on RZ3"'' is 
linear, it induces an action on the projective manifold of rays through the origin. 
Moreover G sends the null cone into itself and acts transitively on the manifold M of 
null rays. This manifold is diffeomorphic to SI x S" and is endowed with a class of 
pseudoRiemannian metrics g, obtained by restriction of the SO(2, n + 1 )  invariant 
metric 9 on any section y of the null cone. The action of G on M is conformal; the 
metrics g, being conformally flat, with signature ( -  +. . . + ), the Lie algebra % of G 
is isomorphic to the Lie algebra of conformal vector fields on Minkowski space R',". 
So we can identify the generators in (2.14a, b)  as follows: JfiY = Lorentz group, D = 
dilation, P, = translations, C, = conformal translations. Let H be the (closed) subgroup 
of G with Lie algebra X =  {JPY, C,, D } :  it is the isotropy group of the origin in R'-". 
Since M = G/H, we can identify M with the 'conformal compactification' of RI-". In 
other words, one can obtain M by adding to RI*" a null cone at infinity. 

Let us now consider the symplectic action of G on T*(G/H). This action not being 
transitive, we may decompose T*(G/H) into orbits of G. They are symplectic manifolds 
on which the group action is transitive, and so they may be identified (Kostant-Souriau 
theorem, [12 p 1801) with (covering spaces of) orbits of G in %*. The point is that to 
obtain the Kepler manifold T'S" (i.e. the cotangent bundle to the sphere with the 
null section deleted) we must restrict ourselves to the subbundle of the null non- 
vanishing covectors [7,8]. To see this explicitly, consider, for example, for E < 0, the 
section y given by 

rz-' =cos xo 

2' = sin xo 

(2.156) 

(2.16) 

(2.17) 
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The constraint Ilyll = 0 on T*M gives a presymplectic manifold but dividing out the 
kernel of the 2-form, i.e. setting xo = 0, we obtain the symplectic manifold T+S". The 
moment map (2.16) becomes 

and 

Po = +yx2 

(2.18b) 

Let us return to the moment map (2.16) and, before reducing it, consider the canonical 
transformation iel: 

(2.19a) 

(2.19b) 

4 0 =  -Y3Xo- (X,  Y Y Y O )  (2 .19~)  

Po= 1PYk (2.19d) 

VI may be viewed as the composition of three canonical transformations: ( a )  that 
given by interchanging coordinates and momenta; (b)  that given by (2.19a, b), 
equivalent to an 'energy rescaling'; (c) that given by (2.19d). Note that (2 .19~)  is 
forced by requiring canonicity. Now the constraint is 

PO+ H ( 4 ,  P)  = 0 (2.20) 

where H ( q ,  p )  =p2 /2F  4- ' .  This Hamiltonian is a function of Bo and thus has the 
same symmetry group SO( n + 1). 

2.3. Including a Dirac monopole [13, 141 

In the physical case, i.e. n = 3, we have the local isomorphism S0(2,4)  = SU(2,2) and 
this gives rise to an interesting generalisation of the moment map (2.18). 

Let 8 be a matrix representation of the U(2,2)-invariant Hermitian form. We 
choose a basis in C292 such that 8 has the form 

C2*' is equipped with a natural symplectic form w = dO, where 

0 =fi(JI 'Ep dJI-d+'8JI) (2.21) 
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and $E C2*'. The linear action of U(2 ,2 )  on C'.2 is manifestly symplectic. The 
associated moment map: C ' . 'HU*(~ ,  2)  is easily found to be 

(2.22) 

where we set $ = (i,), z # 0. The action of the centre U( 1) of U(2 ,2)  is free on 
( C 2  - { O } ) @  C' and induces the reduction of any submanifold T, of twistors of constant 
modulus 

*'qb = p (2.23) 

to T @ / U ( l ) .  We will prove that the moment map: T , / U ( l ) ~ s u * ( 2 , 2 )  is given by 

J = x x m - p X / x  

(2.24) 

where now the r h  are not canonical coordinates but satisfy rather 

{ r h ,  rk}  = I*Ehktxc/X3* (2.25) 

To this purpose, let M be C2 - {0} = R4 - (0) and (z, w) coordinates on (C" {O})O C2 = 
T*M. We have the action of U(1) on M given by 

z-z exp(iP/2) (2.26) 

and we can apply the reduction theorem of Kummer [15]. 

Theorem 2.1. Let G be a one-parameter Lie group acting freely and properly on M. 
Let M H  N = M / G  be the induced principal fibre bundle and cy a connection 1-form 
on it. The reduced manifold is symplectomorphic to T* N endowed with a symplectic 
form given by the canonical one plus a 'magnetic term' 11~:~ dcy (where T., is the 
canonical projection T" N H N ). 

Regard M as R* x S3 so that the U( 1) action on M gives an induced action on S 3 ;  
its quotient is S2 = CP'.  Thus N = CP' x R'. As is well known, this principal U( 1 )  
bundle M H  N has a natural connection 1-form cy given by 

Im( zt d z )  
a =  + 

z z  (2.27) 
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When restricted to S 2  (i.e. ztz = l ) ,  a is the Kahler 1-form on CP'.  The action of U ( 1 )  
commutes with that of S U ( 2 , 2 )  and thus its Hamiltonian is constant. Parametrise z 
in terms of the spherical coordinates (x, 8, 4)  on R3 - {0}, getting 

( 2 . 2 8 )  

The angle p is an 'ignorable' coordinate for all the Hamiltonians of the S U ( 2 , 2 )  action 
and therefore the conjugate momentum is a constant ( = p ) .  It is easy to verify that 
the moment map T * ( R 3 - { 0 } ) - s u * ( 2 ,  2 ) ,  given composing the lift of (2 .28)  with (2 .22) ,  
gives just ( 2 . 2 4 ) ,  as required. The double sign arises since we can choose indifferently 
FmAn+l  in the basis of s u * ( 2 , 2 ) .  The moment map ( 2 . 1 8 )  can be obtained by (2 .24) ,  
putting p = 0 and interchanging coordinates and momenta. 

Analogously to the preceding case and applying another canonical transformation 
V2 (which differs from VI since the interchange between coordinates and momenta is 
missing), we find (see [ 1 6 ]  for details) the Hamiltonian of the MICZ system: 

H = f p 2 +  1 / q + f p 2 / q 2 .  

Finally the canonical transformation V,: 
I/2 

x = [ ( ; ) * - 2 p 0 ]  4 

T = P[ ( - 2p0]  

x 0 -  - 4  PO [ -2P0] 'I2{  4. P+ [ -2Po]f?o]  

Yo = 4 4  Po - ( -&)2) [ ( -&)2 - 2P0] 

(2 .29)  

(2 .30)  

give rise to the reduced Hamiltonian of a particle in an Euclidean Taub-NUT space: 

(2 .31)  

2.4. Quantisation of the Kepler manifold 

Now we want to quantise the moment map (2 .18) ,  i.e. to construct operators acting 
over functions on the sphere S" that close under commutation brackets to give the Lie 
algebra so(2 ,  n + 1 ) .  We start with the representation of SO(2,  n + 1 )  through operators 
acting on S I X  S " :  it is easy to find this representation since this manifold is a 
homogeneous space for the group. We find the induced representation RA : 

(2 .32)  

The vAB are the vector fields generated by the action of S O ( 2 ,  n + 1) on SI x S", T~~ 
the infinitesimal multiplier (null for the isometry subgroup SO(2)0SO(  n + 1)) and A 
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a cornplex parameter. For an  imaginary A (the so-called principal series) the representa- 
tion is unitary, whereas for a real A (the so-called supplementary series) it is unitary 
only when restricted to the isometry subgroup. 

As a basis for the representation space, we may choose functions of the type 

4/", := h , ( i ) e in l . x"  (2.33) 

with I E 2, and 

n even 
m E [ f  n odd 

Here h, is a harmonic homogeneous polynomial ( H H P )  of degree I ,  i.e. 

a a  
ax" ax, h , ( X )  = 0 -- 

a 
X " ,  h , ( X ) =  I h / ( X )  ax 

(harmonicity ) 

(homogeneity). 

( 2 . 3 4 ~ )  

(2.346) 

It is well known that a H H P  of degree I restricted to S" gives a spherical harmonic of 
the same degree. Equation (2.32) gives 

u-,o = -30 ( 2 . 3 5 ~ )  

a a 
ax ax u,p=xp,-xup (2.35b) 

( 2 . 3 5 ~ )  

Define SI,,, as the space of the functions of type (2.33): for every fixed couple ( I ,  m )  
it is the representation space of the maximal subgroup ( =isometry subgroup). Define 
9 := 0 I,,, PI,,,. We have the following. 

Theorem 2.2. For A = -1 the two subspaces of 9 determined by the pairs ( I ,  m )  and 
( 5  - m ) ,  with 

n - 1  m := I+- 
2 

(2.36) 

are invariant under the action of the representation (2.35) and are manifestly isomorphic 
to the space of functions on S". 

In this way we obtain an  irreducible representation by means of pseudodifferential 
operators acting on S". In fact, consider, for example, the energy operator i U-,o = Bo: 
the eigenvalues of Bo acting on gIm are ( I +  ( n  - 1)/2) with multiplicity (21+ n - 1 )  x 
( I +  n - 2 ) ! / I ! ( n  - l ) !  and equal to those of {-A,s,+[(n - 1)/2]2}1'2 acting on S". The 
use of pseudodifferential operators is obviously due  to the fact that our dynamical 
group does not act effectively on S". This theorem is the representation-theoretic 
analogue of the reduction T * ( S ' x S " ) - T + S " :  in fact, the two subspaces of the 
theorem are annihilated by the operators 

and  this is the 'quantum' analogue of the 'classical' constraint liyll = O  (see (2.17)).  
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3. Implementation of the interchange between coordinates and momenta 

At this point it is natural to ask: what is the precise relation between the Fock and  
the classical procedure? The Fock procedure seems to be very closely related to the 
canonical transformation 'b,, but, for example, why must we redefine the wavefunction 
as in (2.8)? In this section we implement the first part of 'bl, that consisting of the 
interchange between coordinates and momenta. To be more precise, we want to find 
how the representation on S" of $ 2 . 4  transforms when, in the moment map (2.18), 
we interchange coordinates and momenta. We thus want to find the generalisation to 
the n-dimensional case of the quantisation of the moment map (2.24) but with p = 0: 
this quantisation has already been found (with generic) by Mack and Todorov [ 171, 
but in a way that is specific for the three-dimensional case. 

It is well known that to the interchange between canonical coordinates corresponds 
to a Fourier transform at the quantum level. But we cannot perform this transform 
directly, since the wavefunction is defined on S", rather than on R". It would be 
possible to obtain a representation on R" following a reasoning analogous to that of 
§ 2.4, but this way we meet a difficulty: those generators which result Hermitian are 
now Po, Pkr Jhk, i.e. the generators of the isometry subgroup of R". The Hamiltonian 
Bo of the KP for E < 0 will be not Hermitian and  this is obviously a disaster. The only 
way to escape this difficulty is to make the representation fully unitary but again we 
fall into a problem: a general method to obtain this exists only (for what concerns us) 
for the Lorentz subgroup SO( 1 ,  n + 1 ) .  

The unitarisation of a representation of the supplementary series RA is obtained 
by means of a intertwining operator .aA (see, for example, [18]). It is defined by the 
property 

RA = R-,$, . (3 .1 )  

Finding such an operator is equivalent to defining a new scalar product in the Hilbert 
space of the representation such that RA becomes fully unitary. This is easily verified. 
In  fact, if a E SO(1, n + 1 )  and x E S", the group action is given by 

( a  - ' x ) 4 (  a - ' x )  ( 3 . 2 )  
where v is the multiplier of the representation. The natural scalar product is obviously 
given by 

T a 4 ( x )  = v - l " / 2 + h J  

where d R  is the Riemannian volume element of the unit sphere S". Put x ' =  a - l x ;  
thus d o '  = U-" dR.  If A is purely imaginary, RA is unitary; in fact 

(TaG, .+)=I,,, ~ * ( x ' ) # ( x ' )  d n ' = ( 4 ,  4).  (3.4) 

Consider now the case A real. If 4 is the wavefunction of RA, 9,4 will be that of R - ,  
and therefore, defining the new scalar product 

( $ 9  4 ) A  := (4, 9 A r b )  (3.5) 
we have that RA is fully unitary. Notice that A cannot be arbitrary if we require the 
definite-positiveness of (3.5): a detailed analysis shows that must be Ih I < n / 2  [ 191. A 
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trivial generalisation to the n-dimensional case of the computation given by Bargmann 
[20] for one dimension gives the explicit form of .aA in the so-called compact form: 

(3 .6)  

Here 2 are the Cartesian coordinates in R"+' of a point with local coordinates x on 
the unit sphere S". One can verify (3.6) directly. Let X be the coordin:tes of a point 
in R1sn+l (with metric tensor 7) belonging to the null cone and put X = rX. Now define 

Remembering the invariance of 7 ( X I ,  X , )  under the group action and that ar = v( a, x ) r ,  
one verifies that the representation RA is unitary with respect to (3.7). But 

since the vector (2, - 2,) belongs to the Euclidean subspace R"+'.  Thus, remembering 
(3.5), we obtain (3.6). 

Let us consider the restriction to the subgroup SO( 1 ,  n + 1 )  of the representation 
on S" of SO(2, n + 1 )  obtained by only considering the generators Jhkr A,,, Bk, 0, i.e. 
excluding the pseudodiff erential operators: evidently, it is a representation of the 
supplementary series with A = -:. A being negative, the corresponding intertwining 
operator is a divergent integral that must be regularised [9, 181. It is thus convenient 
to pass, through (3.1), to the equivalent representation with A =; and hereafter we will 
only consider this positive value. Comparing (3.6) with (2.9), and bearing in mind 
(2.11), we see that 9,,, equals, modulo a numerical factor, the inverse of the  operaror 
Bo. This is a fundamental point: 9,, is Hermitian operator with respect to the scalar 
product (3.3) and therefore also with respect to (3.5). Thus we obtain that the 
representation on S" equivalent to that found in § 2.4 is fully unitary with respect to 
(3.5) with A =:: in fact, the operators JOk and A. will also be Hermitian, since they 
can be obtained through commutation brackets of Hermitian operators. 

Our aim is now to carry the wavefunction of the representation from S" to R". 
Remember [19] that the carrier space of the induced representation RA of SO(1, n + 1 )  
is the space of the homogeneous functions of degree - (n/2+A) on the null cone in 

, i.e. of the functions defined over the rays of the null cone. As a manifold on R1'"+1 

which the wavefunction is defined we may take a section of the null cone. Sectioning 
it with a hyperplane parallel to the subspace R"+' we obtain S", and with one parallel 
to some ray a paraboloid that can be identified with R", since its induced metric is 
flat. Explicitly we have 

(i) for S" 

x o =  1 

2x X k = -  
x 2 +  1 ( 3 . 8 ~ )  

x2-1 
X U + '  = - 

x 2 +  1 
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(ii) for R" 

(3.86) 

Each X of (ii) may be obtained by the corresponding X of (i) multiplying this by 
( x 2 +  1)/2, and to each n-tuple ( x ,  . . . x,) correspond, on the two sections, two points 
that lie on the same ray. To a wavefunction of the representation RA defined on S" 
there corresponds a homogeneous function of degree -(n/2+ A )  on the null cone and 
thus a function on R " :  given a function on S", the corresponding function on R" is 
obtained by multiplying it by [ 2 / ( x 2 +  l ) ] n ' 2 + h .  

Summing up, to implement the interchange between canonical coordinates we must 
( a )  multiply the wavefunction on S" by [ 2 / ( x 2 +  l)](n+1)'2 and ( b )  perform a Fourier 
transform. We will now find the implementation of the representation on S", beginning 
with the energy operator Bo. Let us start from the eigenvalue equation Bo@ = r ) @ ,  that 
we can write in the form 

(3.9) 

Performing ( a )  and ( b )  is equivalent to following the inverse of the Fock procedure 
but without energy rescaling. Equation (3.9) becomes (now yh = - i d / d x h )  

i X ( Y 2 +  l ) 4 ( x )  = 7 ) 4 ( x ) .  (3.10) 

The implementation of the representation on S" is 

Jhk = Xhyk -XkYh 

Lk = Txyk 

Ao= T : X ( ~ * -  1) 

(3.11) 

Bo= F ; X ( y z +  1) 

n - 1  
D = ( x ,  y) - i  - 

2 

where now the ordering of the operators is important. The form of Bo follows directly 
from (3.10), that of Jhk and Pk is obvious and that of the other generators can be 
determined through brackets. 9,,, is a convolution operator and its Fourier transform 
will be a multiplication operator: from (3 .6)  and (2.2) it follows that the representation 
(3.11) is unitary with respect to the scalar product 

(3.12) 



2706 B Cordani 

As in the classical case, the restriction of (3.11) to the three-dimensional case can be 
generalised to include a Dirac monopole. This representation is obtained in [17] by 
quantising the moment map T*(R4-{O})-sp*(8R) and restricting it to the subgroup 
U(2,2): this moment map is quadratic in the coordinates and momenta of T*(R4-{O}) 
and thus, as is well known, its quantisation is standard. As in the classical case, the 
magnetic monopole arises since U(2,2)  has U(1) as a centre. 

4. Quantisation of the physical systems 

The quantisation of the physical systems, i.e. the KP, M I C Z  and reduced Taub-Nu-r 
systems, now follows quite easily. It has already been given in [21] but in a pure 
computational way. 

For the n-dimensional K P  let us consider the eigenvalue equation (3.10) and make 
the transformation (now Ph = -id/dq,) 

Xk = q k / 7 7  yh = VPh. (4.1) 

We obtain 

d 
1 

(tp'- l / q ) &  =- -2T2 (4.2) 

i.e. the eigenvalue equation of the K P  for E < 0 (for E > 0 we start with A& = 774). 
Obviously the transformation (4.1 ) and the change in the eigenvalue parameter: 
77 + -1/277' are equivalent to the canonical transformation %, . Notice however that, 
since the rescaling in (4.1) is not made with a constant but with the eigenvalues, the 
Hilbert space on which the energy operator acts, changes. In fact, the energy operator 
of (4.2) is Hermitian with respect to the scalar product $*d d"x. 

The quantisation of the other systems follows in a very similar way. 
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